A yeast-based screen reveals that sulfasalazine inhibits tetrahydrobiopterin biosynthesis.

نویسندگان

  • Christopher Chidley
  • Hirohito Haruki
  • Miriam Grønlund Pedersen
  • Evelyne Muller
  • Kai Johnsson
چکیده

We introduce an approach for detection of drug-protein interactions that combines a new yeast three-hybrid screening for identification of interactions with affinity chromatography for their unambiguous validation. We applied the methodology to the profiling of clinically approved drugs, resulting in the identification of previously known and unknown drug-protein interactions. In particular, we were able to identify off-targets for erlotinib and atorvastatin, as well as an enzyme target for the anti-inflammatory drug sulfasalazine. We demonstrate that sulfasalazine and its metabolites, sulfapyridine and mesalamine, are inhibitors of the enzyme catalyzing the final step in the biosynthesis of the cofactor tetrahydrobiopterin. The interference with tetrahydrobiopterin metabolism provides an explanation for some of the beneficial and deleterious properties of sulfasalazine and furthermore suggests new and improved therapies for the drug. This work thus establishes a powerful approach for drug profiling and provides new insights in the mechanism of action of clinically approved drugs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tetrahydrobiopterin regulates monoamine neurotransmitter sulfonation.

Monoamine neurotransmitters are among the hundreds of signaling small molecules whose target interactions are switched "on" and "off" via transfer of the sulfuryl-moiety (-SO3) from PAPS (3'-phosphoadenosine 5'-phosphosulfate) to the hydroxyls and amines of their scaffolds. These transfer reactions are catalyzed by a small family of broad-specificity enzymes-the human cytosolic sulfotransferase...

متن کامل

Systematic screen for mutants resistant to TORC1 inhibition in fission yeast reveals genes involved in cellular ageing and growth

Target of rapamycin complex 1 (TORC1), which controls growth in response to nutrients, promotes ageing in multiple organisms. The fission yeast Schizosaccharomyces pombe emerges as a valuable genetic model system to study TORC1 function and cellular ageing. Here we exploited the combinatorial action of rapamycin and caffeine, which inhibit fission yeast growth in a TORC1-dependent manner. We sc...

متن کامل

Sulfa drugs inhibit sepiapterin reduction and chemical redox cycling by sepiapterin reductase.

Sepiapterin reductase (SPR) catalyzes the reduction of sepiapterin to dihydrobiopterin (BH2), the precursor for tetrahydrobiopterin (BH4), a cofactor critical for nitric oxide biosynthesis and alkylglycerol and aromatic amino acid metabolism. SPR also mediates chemical redox cycling, catalyzing one-electron reduction of redox-active chemicals, including quinones and bipyridinium herbicides (e.g...

متن کامل

A novel high-throughput screening assay for discovery of molecules that increase cellular tetrahydrobiopterin.

Tetrahydrobiopterin (BH(4)) is an essential cofactor for the nitric oxide (NO) synthases and the aromatic amino acid hydroxylases. Insufficient BH(4) has been implicated in various cardiovascular and neurological disorders. GTP cyclohydrolase 1 (GTPCH-1) is the rate-limiting enzyme for de novo biosynthesis of BH(4). The authors have recently shown that the interaction of GTPCH-1 with GTP cycloh...

متن کامل

Glucose‐based microbial production of the hormone melatonin in yeast Saccharomyces cerevisiae

Melatonin is a natural mammalian hormone that plays an important role in regulating the circadian cycle in humans. It is a clinically effective drug exhibiting positive effects as a sleep aid and a powerful antioxidant used as a dietary supplement. Commercial melatonin production is predominantly performed by complex chemical synthesis. In this study, we demonstrate microbial production of mela...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature chemical biology

دوره 7 6  شماره 

صفحات  -

تاریخ انتشار 2011